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One way of evaluating a latent trait model for tests is in

terms of the precision with which it estimates an examinee's ability:

The more precise the estimate, the more information the model can be

said to provide. Birnbaum (1960 operationalited this conception of

information as the quantity inversely proportional to the squared length

of the confidence interval for the estimate of an examinee's ability.

Defined in this wayi the amount of information in a test is a function

of ability. Mathematically, Birnbaum's information function may be

defined as
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In equation (1), I is the amount of the information at ability level

0 provided by scoring formula, x , where

n
x t v. u.

el 6 6

n is the number of items in the test, v is the scoring weight for

item & , and ug is p function which takes the value one if item &

is answered correctly, s d tern otherwise. The remaining terms of
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equation (1) are defined as follows:
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;3(0 is the characteristic curve for i,em & with its mathematical

form specified by the teat model; it gives the probability that an

examinee of ability 0 answers item g correctly. In the three-parameter

logistic model, (Birnbaum, 1968), the item characteristic curve takes

the form presented in equation (3). The parameters b
1

and a
-g

are

usually referred to, respectively, as the in.lex of imaloa and

discrimination of item & 1 while paramet'r c , the lover asymptote

of the item characteristic curve, may be thoughtof as the guessing

parameter. The constant D is a scaling factor that is usually chosen

to be 1.7 to make the logistic distribution function conform as closely

as possible to the normal (Lord, 1952) A two-parameter logistic model

(Birnbaum, 1957; 1958a; 1958b; 1968) may be obtained from the three-parameter

model by 'musing that the effect of guessing on test scores is negligible

and setting c
8

in equation (3) to zero. If, in addition, it is assumed

that the items in a teat have equal discriminating power (i.e., a a a

for all & , g = 1, 2, n) the resulting item eha,-acteristic curve

has but one free parameter per item (i.e. kg) and specifies a model that

CAA be shown to be formally equivalent to a test model developed by



3

Rasch (1960; 1966).

Birnbaum (1968, p. 454) demonstrs:ed that the maximum value of

I(8, , represented as 1(0), is given by

1(8) E c(f); (0))2/11) (0) Q e)

1(8, x) 1 1(8) . Equality holds when the scoring weights,

vg , are chosen such that

v r, P1(0) / P
8
(0) Q (8) g 1, 2, ..., n (7)

except for a possible scaling factor. Thus to maximize the information

function and consequently minimize the width of the confidence band

abut an ability estimate under the one-, two- and three-parameter

logistic models, the scoring weights should be chosen to be 1 , Dag

and Da T(Da (0 - bg) - logo) ig 11 2, ..., n , respectively.

(In the third weight, Y is the logistic distribution function.) Notice

that only in the case of the three-parameter model are the weights

dependent on ability. The scoring system of the three - parameter model

has the effect of reducing the weight assigned to correct answers on

items with a sizeable guessing parameter. Moreover, the weight for such

items is smallest for low ability examinees who are most likely to have

answered by guessing, and becomes increasingly large as the ability of

the examinee increases.

If scoring weights different from the optimal weights specified

by a test model are used, the information derived b using these

inappropriate weights to score a test viii be less than what is potentially

available. Birnbaum used the term efficiency, to refer to the information



lost due to the use of less than optimal scoring weights. The concept of eff-

iciency may be formal3y explicated as follows. Assuming a particular test model

is the true model, let Ii(0, xi) and 12(0, 4) represent the information

functions of any two scoring formulas xl and 42 respectively. Then, the

ratio ye, xl) / Iefe, 41 is called the relative efficiency (at 0)

of x to x If the scoring weights used in x are such that
1

. _e

(;) - I
2
(61 x

2
) , then the ratio of I

1
(0, x

1
/ I

2
(0) is called

2 -

the efficiency (at 0) of xi . Thus, it is possible, using the optimal

scoring weights specified by a model, to investigate the relative

efficiency of the model at estimating ability when a test is known to

be composed of items that conform to the assumptions of a more general

model. For exsuple, the one-parameter logistic (Reach) model specifies

unit scoring weights for estimating ability. The efficiency of scores

based on these weights when the items in a test conform to the assumptions

of a two - parameter logistic model is given by

I(0, xl)
Eff le " "Itfr

.°

t P"O) (IRO)

)

n
where xuEu. o1
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and

n
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The efficiency of scores computed from the weights specified by the

two-parameter logistic model when the itemsof a test conform to the

assumptions of the three-parameter model is given by

Bff[0, x2)

IP, x2)

2
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and ,P ,g(0) is defined as in equation (3).

(12)

The question of efficiency has been considered in at least two

previous studies. Birnbaum (1968) investigated the efficiency of unit

scoring veighte when the weights specified by the two-parameter model

were Appropriate. He did this for abilities in the range -3 1 0 1 3

while systematically varying the range of the distribution of discrimina-

tion parameters. Birnbaum considered some tests in which the discrimina-

tion parameters of the items were located half at one end of the range

of the distribution of discrimination parameters, half at the other end.

The items in Birnbaum's tests were all of middle difficulty, that is

b
6

0, g 1, 2, n . When there was a small difference between

the two possible values of the discrimination index (0.44 vs. 0.58),

efficiency vas about 97%. When the values of the discrimination index

were 0.31 or 0.75, efficiency vas reduced, and varied from about 80% to

about 90% depending on the level of ability. When the two values of the

discrimination parameter were made to approximate the maximum difference
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that is observed in practice (0.20 vs. 0.98), efficiency varied from

about 60% to about 70%, again depending on ability. Birnbaum also

considered the more typical case in which the items of a test have

discrimination parameters distributed more or less uniformly across

the range 0.20 to 0.98. In this case, efficiency vas about 80%.

Using a scoring system with an efficiency of 80% is equivalent to .

diiearding 1/5 of the information available in the test. Clearly, in

such instances it would be inefficient to use unweighted test scores.

Lord (1968) investigated the efficiency of ability estimates based

on unit scoring weights when optimal estimates would be based on the weights

specified by the three-parameter logistic model. He found that the

efficiency of unit-weight scores on the verbal part of the scholastic

aptitude test where it was assumed that the three-parameter model was the

true model varied from 55% at the lowest ability level to a maximum of 90%

at a high ability level. Here again, the importance was demonstrated of

using scoring weights. appropriate to a more general test model.

Purpose

Recently, there has been increased interest in logistic test

models, Particularly the one-parameter logistic (Raech) model. Because

the restrictive assumptions of fhe one-parameter model are often violated

by test data 'see Hambleton (1969) for a summary of the evidence) the

model will usually not fit data as well as the tore general logistic

models. Hence, using the one-parateter model to estimate ability when

a more general model would provide a more appropriate estimate will

result in a loss of information in the sense defined earlier.
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The questions asked in this :study were as follows: How much

information is obtained about an examinee's ability using the scoring

systems of the one-, two- and three - parameter logistic test models

as the range of the distribution of item discrimination parameters and

the mean level of guessing on the items are varied systematically in

simulated tests? Under these circumstances, what is the efficiency of

tbt scoring systems of the less appropriate one- and twoparametc-

models when the comparative standard is the amount of information provided

by the more appropriate two- and three-parameter models? Since informa-

tion curves and efficiency are both a function of ability, answers to

the two questions were obtained for different values of 0 .

Methodology

Generation of Item Parameters

To begin with, it was assumed that only a single latent ability

vas being measured. This is an assumption typically made in latent trait

theory (McDonald, 1967) The situation which was envisioned as being

in some sense typical of nature was one in which scores on this single

latent ability are normally distributed in the populaticl. A suitable

cling of the ability continuum would establish a mean of the ability

distribution of tero and a standard deviation of one Under thee.,

conditions, over 99% of the pdkalation would have ability stores on the

interval (-3, 3). These limits rer the range of ability were chosen for

the study.

Testa were simulated so that the items ranged in difficulty

within reasonable limits for the group being tested. In effect, it was

assumed the teat would contain no item ao easy that more than 95, °t o,
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population approximately normally distributed on the interval (-3, 3)

would get it correct; also, no item would be so difficult that less

than 5% of the population would get it correct. Difficulty parameters

bg , g - 1, 2, ..., n , were randomly assigned to each of the items

in a simulated tvlt subject to the restriction they were drawn from a

population distribution of difficulty parameters that was rectangular

on'the interval (-2, 21 with a mean of zero. Lord's (1966) work

reveals this choice of assumed distribution and range of item difficulty

parameters to be realistic, at least for the kind of test he studied.

The item discrimination parameters, Ag , g = 1, 2, ..., n ,

were assumed to be drawn from a uniform population distribution with a

mean of 0.59 and a range which was systematically varied across simula-

tions between zero and 0.80, inclusive. The results obtained by Lord

(1968) and Ross (1966) support the choice of this form of distribution

for the discrimination parameters.

The magnitude of the item guessing parameters, cg , g = 1, 2, ..., n ,

for each set of test data was controlled by the value of c , where c

was the mean of the guessing parameters of the items in a simulated test.

Assuming five-option multiple-choice tests and a heterogeneous ability

group, it seemed reasonable also to assume that individual values of

cg and c would be bounded on the interval (.00, .201. Give a specified

MEM

value of c , the cg's were generated subject to two constraints:

(1) c = E cdn
gel

(2) c - min (.20 - c, "6) cg r + min (.20 - c, "E) , g 1, 2, ... n.
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Procedure

Four ranges of the distribution of discrimination parameters

were considered: 0.00, 0.20, 0.40 and 0.80. Three mean levels of

the guessing parameter were considered: 0.00, 0.10 and 0.20. (In the

11.1M OEM

case of c me 0.00 or c = 0.20 , all the values of c were zero or-

0.20, respectively.) Under tae conditions specified above, item

parameters were generated at random by computer for eleven of the twelve

possible combinations of the range of distribution of discrimination

parameters and mean level of guessing. (Excluded was the case where

the range and c would be zero.) Each simulated test was assumed to

have 15 items.

Taking the three-parameter logistic model to be the true model

(except when 7= 0 , in which case the two-parameter logistic model

was taken to be the true model), the information provided by scores

based on the weights of the one-, two- and three-parameter logistic

models was computed for each of seven values of 0 , 0 = -3 + k ,

k = 0, 1, ..., 6 . The efficiency of the scoring systems specified by

the less general test models was then determined for each level of ability.

All the computations were done using a program developed by Hambleton (1970).

Results and Discussion

The notation, xl E u , x2 = E Da
g
u
8

and x
3

= E Da T(Da
gg=1 g 8"1 . .

g=1. g

(0 - b ) - log cg) was used for the scoring formulas specified by the one-,

two- and three-parameter logistic models respectively. The quantities

xi), I(2, x2), 1(0,x3), Eff[0, x1) = I(0, xl) / 1(0, x3) ,

Eff(0, x2) = 1(0, x2) / 1(0, x3) and Eff(0, xl, x2) = 1(0, xl) /

VO, x2) for 0 - -3 + k, k - 0, 1, ..., 6, are reported in Table 1 for
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eleven sets of data. When c = 0, x
2

= x3, hence I(0, x3), Eff(e, x
2

)

and Effie, xl, x
2

] are not reported. When the range of the discrimina-

tion parameters is zero, xl = x2 , and so 1(0, ise), Eff[e, x2], and

Eff(0, xl, kJ are not reported.

The information values displayed in Table 1 reveal an approximately

bell-shaped relationship between information and ability. Information

is.greatest near the middle of the ability distribution and much less at

the extremes. When guessing occurs (e > 0), less information is provided

by all three scoring systems, but the decrease is particularly noticeable

at low ability levels for scoring formulas Al and A2 . The relationships

among the information functions of the scoring systems, under the assumption

that the three-parameter model is the appropriate one, may be roughly

summarized by the inequalities.

I(e, x3] ! I(0, x2] ! x13 ,

This relationship appears to hold except for the situations involving very

low levels of ability and c> 0 when, 1(0, xl] (0, x2] .

It appears that when guessing is a component in test performance unit

scoring weights are better than the weights specified by the two-parameter

model at estimating the ability of low ability examinees.

On additional comment should be made about information functions.

It is possible to obtain any shape for the information function that is

desired by judicious choice of test items (Birnbaum, 1968). The informa-

tion functions described here may be considered relevant for at least

some testing situations because the distributions of item parameters chosen

to guide the simulation of test data were similar to what has been observed



TABLE 1

Information Curves and Efficiency

Set 1

Discrimination Parameters: Ts a .59 ,

Guessing Parameters -6" .00 ,

Range .3 .20: .49 to .69 .

Range 4 .00..

Ability Ife,x11 1(0,x3] Eff[0,x1) Eff(0,x2) Eff[0,x1,x2]

-370 .99 .99 -- .99
-2.0 1.85 1.86 -- .99
-1.0 2.63 2.66 ,0 MO .99
0.0 2.82 2.84 IMi .99
1.0 2.43 2.45 .99
2.0 1.74 1.75 -- .99
3.0 .99 1.00 dMi .99

Set 2

Discrimination Parameters: W .1 .59 , Range Q .40; .39 to .79 .

Guessing Parameters r. .00 , Range .00

Ability I(6,x1) I[0,x2] I(S,x3) Eff[B,x1) Eff[0,x2] Eff[00(1,x2]

-3.0 .94 .97
-2.0 1.80 1.85
-1.0 2.65 2.74
0.0 2.80 2.91
1.0 2.32 2.39
2.0 1.64 1.69
3.0 .95 .97

AMEND

IWO

11111.

.97

.97

. 97

.96

.97

. 97

. 98

11I

OEN

Set 3

Discrimination Parameters: W .59 ,

Guessing Parameters .00 ,

Range .80; .19 to .99 .

Range .00

Ability 1[0,x0 I[0,x2) I[0,x3) Eff[0,x1) Eff(0,x2) Eff[0,x1,x2)

-3.0 .75 .87
-2.0 1.55 1.79
-1.0 2.59 2.98
0.0 2.73 3.13
1.0 2.01 2.29
2.0 1.34 1.52
3.0 .77 .87

.86

. 87

.87

.87

.87

.88

.87
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TABLE 1 (Cont'd)

Set 4

Discrimination Parameters:
Guessing Parameters

W = .59
= .10

, Range = .20; .49 to .69 .

, Range = .20; .00 to .20 .

Ability I[0,x1] 1[0,x2) I[8,x3) Eff[0,x1) Eff[0,x2) Efff8,x1,x2]

-3.0 .40 .39 .54 .74 .73 1.01
-2.0 1.06 1.07 1.22 .87 .87 .99
-1%0 1.84 '1.86 1.95 .94 .95 .9

0.0 2.19 2.23 2.25 .97 .99 .99
1.0 2.03 2.05 2.05 .99 I.00 .99
2.0 1.53 1.54 1.53 .99 1.00 .99
3.0 .89 .90 .90 .99 . L.00 .99

Set 5

Discrimination Parameters: 11.= .59 , Range = .40; .39 to .79 .

Guessing Parameters : -6= .10 , Range = .20; .00 to .20 .

Ability I[8,x1) I[0,x2) I[8,x3) Eff[0,x1) Eff[e,x2] Eff[0,x1,x2]

-3.0 .39 .37 .53 .73 .70 L.4
-2.0 1.04 1.05 1.21 .86 .87 .99
-1.0 1.86 1.92 2.02 .92 .95 .97
0.0 2.18 2.27 2.30 .95 .99 .96
1.0 1.93 2.00 2.01 .96 1.00 .96
2.0 1.44 1.48 1.48 .97 1.00 .97
3.0 .85 .87 .87 .98 1.00 .98

Set 6

Discrimination Parameters: 1. = .59 , Range = .80; .19 to .99 .

Guessing Parameters : "E = .10 , Range = .20; .00 to .20 .

Ability I[0,x1) I[8,x2) l[8,x3) Eff[0,x1) Eff[8,x2) Eff[8,x1,x2)

-3.0 .34 .29 .48 .70 .60 1.16
-2.0 .92 .94 1.14 .80 .82 .97
-1.0 1.83 2.06 2.17 .84 .95 .89
0.0 2.12 2.45 2.48 .85 .99 .86
1.0 1.67 1.92 1.93 .86 I.00 .87
2.0 1.18 1.34 1.34 .88 I..00 .88
3.0 .69 .79 .79 .87 1.00 .87.
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TABLE 1 (Coned)

Set 7

Discrimination Parameters:
Guessing Parameters :

.59

'ea .20
, Range 1. .20; .49 to '.69 .

Range 1. .00 .

Ability I[8,x1) I[8,x2] 1[6,x3] iff[0,x1) Eff(O,x2) Eff[O,x1,x2)

-43.0 .22 .22 .32 .68 .68 1.01
-2.0 .69 .69 .87 .79 .80 .99
-1.0 1.33 1.35 1.53 .87 .89 .98

0.0 1.70 1.72 1.82 .93 .95 .98

1.0 1.64 1.66 1.69 .97 .98 .99
2.0 1.28 1.29 1.29 .99 1.00 .99
3.0 .76 .77 .77 .99 1.00 .99

Set 8

Discrimination Parameters:
Guessing Parameters :

ri .0 .59 ,

c a .20 ,

Range Is .40; .39 to .79 .

Range .00 .

Ability ID:00c1) I(0,x2] I[8,x3] Eff[8,x1) Eff(0,x2) Eff(0,x1,x2)

-3.0 .22 .21 .32 .68 .65 1.05
-2.0 .67 .67 .85 .79 .79 1.00
-1.0 1.35 1.40 1.58 .85 .89 .96
0.0 1.69 1.78 1.88 .90 .95 .95
1.0 1.56 1.62 1.65 .95 .98 .96
2.0 1.20 1.23 1.24. .97 1.00 .97
3.0 .73 .74 .74 .98 1.00 .98

Set 9

Discrimination Parameters: a .59 , Range R .80; .19 to .99 .

Guessing Parameters : c .20 , Range .00

Ability I(8,xil I[8,x2) I(8,x3) Eff[0,x0 Eff(e,x2] Eff(0,x1,x21

-3.0 .19 .16 .29 .66 .54 1.23
-2.0 .59 .59 .78 .76 .76 1.00
-1.0 1.33 1.51 1.69 .79 .89 .88
0.0 1.65 1.94 2.06 .80 .95 .85
1.0 1.34 1.56 1.59 .85 .98 .86
2.0 .97 1.11 1.11 .87 1.00 .88

3.0 .58 .67 .67 .87 1.00 .87



14

TABLE 1. (Cont'd)

Set 10

Discrimination Parameters: -a- .59 , Range DI .00

Guessing Parameters : c I. .10 , Range D .20; .00 to .20 .

Ability I[0,x1] I[0,x2] 1[0,x31 Eff(0,x13 Eff(8,x2) Eff(8,x1,x21

.40

-2.0 1.06
-1.0 1.80
OM 2.19
1.0 2.09
2.0 1.58
3.0 .91

11.11

.55 .,4

1.21 .87

1.90 .95

2.22 .98

2.10 1.00
1.58 1.00
.91 1.00

Set 11

Discrimination Parameters: E - .59 , Range a ;00 .

Guessing Parameters c o .20 , Range .00 .

Ability ID,x1] ile,x2) 10,x3) Eff[0,x0 Eff[0,x21 Eff[8,x1,x2]

-3.0 .22

-2.0 .68

-1.0 1.30
0,0 1.69
1.0 1.69
2.0 1.33
3.0 .78

.33 .68

.87 .79

1.48 .88

1.79 .95
1.72 .98

1.33 1.00
.78 1.00
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in some testing applications.

The results for efficiency may be summarized as follows: When

there is no guessing (i.e. 7113 0), the efficiency of a scoring system

using unit weights remains high (over 95%) until the range of the distri-

bution of discrimination parameters becomes large (0.80 in this study).

Moreover, efficiency is relatively constant across different levels

orability. When guessing is introduced, this picture changes drama-

tically. Then, at low ability levels the efficiency of scoring systems

x1 or x
2

is markedly reduced,'independently of the magnitude of the

range of the distribution of discrimination parameters. Of course,

as this range increased, the efficiency of xl and A2 decreases,

again most noticeably at the low ability levels. Indeed, even with a

maximum range of the distribution of discrimination parameters (0.80),

x
2

still provides very efficient estimates of ability for examinees

with high ability. Under the same circumstances, xl has considerably

reduced efficiency.

On the basis of these results, it appears that when a test is

being used to estimate ability across a broad range of ability levels and

when guessing is a factor in test performance, the scoring system of the

three-paramet:r model is to be preferred. On the other hand, if only high

ability examinees are of interest, then even in the presence of guessing,

the scoring system of the two-parameter model provides acceptable ability

estimates no matter how wide the range of the distribution parameters

becomes within the limits studied here. Unit scoring weights, that is the

scoring system of the one-parameter (Rasch) model appears to provide

efficient estimates of ability when there is little or no guessing and when

the range of the distribution of discrimination parameters is fairly small.
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